No, if truly random it could be any number from 0 to infinity. The randomization doesn't impart any qualities to the selected number.
If you randomly selected numbers from the infinite range of numbers for an infinite number of time, you would get a result of "7" just as often as getting "3.456e11".
The probability of getting a finite number is pretty much zero.
For any range [0; n], where n is finite, there are always infinitely many numbers larger than n, so the probability of getting a number in said range is n/(n+infinity).
I feel very confident in saying that something with that probability will never happen.
The probability of getting any number with a given set of characteristics is pretty much 0, but that doesn’t mean the number doesn’t exist once generated.
I see what you're saying (assuming you mean a random integer from 0 to infinity), but it couldn't really, since there's no such thing as an integer with infinite digits - any random integer will have finite number of digits.
The real problem is there's no way to choose a random number from 0 to infinity. Every finite number has a probability of 0, and in fact, for any number you choose, there is 0 probability that it will be less than that number. Note that 0 probability is different from "impossible" - see https://en.wikipedia.org/wiki/Almost_surely
are we counting an infinite number of zeroes after the decimal point, as having infinite digits? because if you specifically exclude while numbers, your output would not be truly random, though it would be essentially impossible to distinguish it from true randomness.