(I wonder if he knows about lemmy)1 divided by 0 (a 3rd grade teacher and principal got it wrong), Reddit r/NoStupidQuestions [4:51 | Dec 02 2023 | bprp precalculus]
And his ability to effortlessly use a black pen and a red pen in one hand to illustrate changes in equations by step is truly both masterful in it's delivery and in its performance.
That's not what division is though. Division, at least when talking about splitting a pizza, has 2 options.
The first is splitting it into X equal parts. If you split a pizza into 0 equal parts, how large is each part?
The other option with pizza would be to say you are splitting into some unknown number of slices of a specific size. if you split a pizza in to slices that are 0 inches wide, how many slices do you get?
Neither method gives any logical result when using 0 with regards to pizza.
I'm not super great at math, and the concept of division by zero has been somewhat confusing for me. It's also been a bane to my existence as a programmer. To me, in both scenarios, it makes sense to get back the original number, because 0 equal parts and zero inches wide leaves the original pizza untouched. But I also accept that there are much smarter folks out there who know better than I do, so undefined or NaN is what it is.
Reddit? This is lemmy. Why are we talking about reddit? I thought the reddit migration was over? Hasn't enough time passed already for the sensible users to switch from reddit to lemmy?
Anything /0 is considered impossible as an agreement. There's no actual math involved in that answer. In reality you can divide by 0, but the answer has no natural number.
How many times can you add 0 before you get 1?
The answer actually is the drunk(😅) 8 or 'infinite', but our minds can't grasp the very existence of infinite, so we just went with 'impossible'.
There are ways to circumvent that added concept of some calculators when dividing by 0 anyway and it will show you "Infinite" if it is able to. I remember you could do this in C+ even, but not 100% sure anymore how. I think it was with dividing by an ever decreasing number-variable. When it reaches 0 just before the calculation, C+ didn't default to an error, but just said 'Infinite'. But like I said, not 100% sure anymore if that was the actual way.
If your counter against that is that 0 will never become 1 no matter how many you add, then that just proves 'infinite' correct. If it ever could, it wouldn't be infinite...
Sooo, this guy is smart, but also wrong in his calculation here. 😅
Edit: Anyway, voting me down doesn't change the inconvenient truth above. 😅
the limit of y in 1/x=y as x approaches 0 from negative one is negative infinity. the limit as x approaches 0 from positive one is positive infinity. 1/0 is simultaneously both positive and negative infinity and is paradoxical.
One could argue that negative and possitive infinity, unlike natural numbers, boils down to the same thing, though. Just like 0, infinity technically has no + or -.
We do have a concept of limits in math. That doesn't mean we ignore it. It is just more correct not to divide by zero as the limits from either side do not converge. Or would you allow -inf as an answer aswell? That is the answer if we approach the limit from the other side.
It is not only convenience but rigor that dictates dividing by 0 to be an erroneus assumption.
It was drilled into my head in school that it's not a proper limit unless it includes the text "lim A->B". So using infinity at all, without specifying that you're taking the limit, would be incorrect. This makes sense as infinity isn't a real number that you can actually be "equal to", just a concept you can approach, so you need to specify that by taking the limit, you're only approaching infinity. I guess the guy you're replying to needs to hear this more than you though.
If your counter against that is that 0 will never become 1 no matter how many you add, then that just proves 'infinite' correct. If it ever could, it wouldn't be infinite...
You're confusing infinity for unreal numbers. Infinity and negative infinity are not real numbers, but not all unreal numbers are infinity or negative infinity.
If you're strictly adding zeros, then adding infinite zeros nets you zero. If adding zero once didn't change the result, then adding it infinite times won't either. If you need to add enough zeros to get to 1, that number doesn't exist - but that doesn't mean that it's infinity, it means that there's no solution. Infinity is a placeholder for "larger a real number than you can imagine", but when you multiply that by zero, the magnitude of infinity is a moot point because you have zero infinities.
In calculus if you're curious, you're usually not strictly adding zero itself like above but instead adding values that approach zero. In that case, 0*infinity really "a very small number times a really big number", and that is called an "indeterminate form". In that case you may try rearranging it to solve
You say it yourself. If you keep adding infinite zeros you will never get 1, hence the 'divided by 0' part.
Also, 0 is technically not a number either, it's the concept of the absence of one. You can't count 0 things. That doesn't mean we don't use it, though. It's just less hard to imagine and closer to our basic calculations than infinity is.
Division is defined as the inverse of multiplication. The answer to one divided by zero is the same as asking which number you would multiply by zero in order to get one. No number has that property, not even infinity. So the answer is undefined.
One divided by 'epsilon', where epsilon represents a very tiny number, approaches infinity for ever tinier epsilons, so in some maths contexts infinity makes sense. But in general it's a meaningless question, and so can only have a meaningless answer.
Wait, are you seriously arguing that maths follows IEE754 rules? You know that those are specific rules that we use to allow efficient maths in binary systems, right?
If you're actually correct and we all just don't want your "inconvenient truth", you'll surely be able to show some source that agrees with your ideas, right?