It's rather the opposite. Big oil pushes nuclear because nuclear directly competes with renewables, and because nuclear is a centralised power generation solution that they can fully own, in contrast with stuff like rooftop solar or onshore wind. Shell has a share in General Atomics, BP is eyeing investments into nuclear energy.
Nuclear fusion might truly be an answer, but there is nothing that nuclear does that renewables can also do, but cheaper and faster.
Literal fucking oil shill. Tell me. Where did I ever say to not keep building solar? Where did I ever say that we should let oil Giants maintain their monopolies. I agree that we do need to continue to expand renewable options at a local and state level, not a corporate fossil fuel level. Open your goddamn eyes and read the five graphs I've pasted so far in this common thread. Please make me understand how if technology we've been investing in more heavily than anything else for 20 years and that only now takes up 16% of our total energy needs is going to magically cover the other fucking 84%. Of the base load.
Money spent building nuclear is money not spent on renewables. I didn't say you said to stop building solar, but deciding to build nuclear does mean building less solar, simple allocation of resources.
Solar energy particularly has been becoming increasingly efficient and cheap. In fact, it's ahead of even the most optimistic expectations price-wise.
Wind, solar, geothermal, hydro and energy storage solutions are perfectly capable of providing the full energy demand whenever we require it. The only issue is building sufficient amounts of it.
In fact, nuclear is particularly bad at providing base power. The reason is that renewables are so cheap (and becoming cheaper), that one of the main issues has turned into having too much power on the grid. Nuclear unfortunately doesn't turn off and on very quickly. Many old reactors take a couple hours to do so, and even if it's technically possible it's financially impossible because the reactor would be running at too large a loss. When dealing with fluctuating power (mostly caused by the day/night cycle of solar, other effects mostly even out if the grid is large enough), you need a backup system that can also easily turn on and off. Energy storage and hydrogen can do this, nuclear can't.
Then there's the energy security argument. 40% of uranium imports come from Russia. Kazakhstan is an alternative, but even that is largely controlled by Rosatom.
Literal fucking oil shill.
Please stay civil. I'm happy to debate you but you can keep the insults to yourself. I'm very much against the oil industry. I'm not even necessarily against nuclear as a technology (I think it's safe and don't think the waste will be too big of an issue, also fusion is really cool science), but I have to conclude that it doesn't make financial sense to go for nuclear, there's practical problems integrating it with a renewable grid and we just have better alternatives.
Renewables are great while in combination with peaker plants as the renewables produce a good amount of the base load when the sun shines wind blows etc, That energy generation is dirt cheap no arguments there. The Issue is those Peaker Plants are OIL COAL and GAS fired in most cases. The ideal solution IMHO would be to phase out the peakers and replace them with grid scale power storage augmented with nuclear base stations to manage load and reduce the need for new construction of grid scale power storage. The issue only using renewables is these grid scale batteries are projected to cost billions of dollars per project and if we forgo nuclear base stations to provide base load we would need a massive amount of these grid scale power storage stations in addition to also then having to generating roughly 90% more power than we do now from renewables alone to replace fossil fuels and to make up for inefficiencies in a storage dependent grid due to the fact that there would be constant losses of energy every time its transferred from generation to storage to use potential. Its simpler and more efficient make power on demand so I think we should take the current infrastructure and modify it. A turbine cares not what turns it. We can rip out coal fired oil fired and gas fired infrastructure and replace it with a modern generation of Small Modular Reactors ( it is proven technology ask the US NAVY https://en.wikipedia.org/wiki/United_States_naval_reactors ) With Peaker plants being transitioned to base stations this would make it so that the excess energy stored during the day can be tapped but we would not have to depend on it. Instead we can dynamically as needed (as the day ends in solar heavy locations or on calm days in wind heavy locations) start up the nuclear base stations to keep the grid energized using the batteries as a buffer on both ends as the Nuclear plants can not be cycled as quickly as fossil plants but can provide steady power on demand.
So while the progress of the last few decades in renewables is great progress, I'm certain you can see why we need to divest from oil and invest in nuclear tech to take up the base load
A lot of countries are doing just fine using only renewables to replace energy generation from fossil fuels. Nuclear is really expensive while renewables are the cheapest. There's just no reason to use nuclear.
Albania, Iceland, and Paraguay obtain essentially all of their electricity from renewable sources (Albania and Paraguay 100% from hydroelectricity, Iceland 72% hydro and 28% geothermal). You may notice Solar is not mentioned.
I didn't say countries that already successfully did it, I meant countries that are in the process of doing so. Germany, for example, has no nuclear energy and is getting 60-70% of its energy from renewables. There are countries that are already further along but building renewables takes time. Building a nuclear power plant also takes years but you get nothing from it until it's finished.
I'll take "useless arguing over a conflict of interests that realistically doesn't exist because none of the people arguing can actually do anything to solve the problem" for 500, Jennings.
jesus christ these category titles are getting really bad
This used to be true, and there was enormous investment in nuclear power.
But the truth is that renewables have come a LONG way these past few decades. In many places, renewables is the cheapest energy to invest in, cheaper than even Fossil fuels in many cases. And much much cheaper than nuclear.
Why build a nuclear plant when you can build diversified renewable energy sources for the same price or less?
As a very small added bonus, renewables can't be turned into bombs. Yet.
Its not cheaper if you only count the generation side you are ignoring Storage and Capacity factor those in and its not cheaper anymore.
Renewables are great while in combination with peaker plants as the renewables produce a good amount of the base load when the sun shines wind blows etc, That energy generation is dirt cheap no arguments there. The Issue is those Peaker Plants are OIL COAL and GAS fired in most cases. The ideal solution IMHO would be to phase out the peakers and replace them with grid scale power storage augmented with nuclear base stations to manage load and reduce the need for new construction of grid scale power storage. The issue with your suggestion is these grid scale batteries are projected to cost billions of dollars per project and if we forgo nuclear base stations to provide base load we would need a massive amount of these grid scale power storage stations in addition to also then having to generating roughly 90% more power than we do now from renewables alone to replace fossil fuels and to make up for inefficiencies in a storage dependent grid due to the fact that there would be constant losses of energy every time its transferred from generation to storage to use potential. Its simpler and more efficient make power on demand so I think we should take the current infrastructure and modify it. A turbine cares not what turns it. We can rip out coal fired oil fired and gas fired infrastructure and replace it with a modern generation of Small Modular Reactors ( it is proven technology ask the US NAVY https://en.wikipedia.org/wiki/United_States_naval_reactors ) With Peaker plants being transitioned to base stations this would make it so that the excess energy stored during the day can be tapped but we would not have to depend on it. Instead we can dynamically as needed (as the day ends in solar heavy locations or on calm days in wind heavy locations) start up the nuclear base stations to keep the grid energized using the batteries as a buffer on both ends as the Nuclear plants can not be cycled as quickly as fossil plants but can provide steady power on demand.
I like nuclear and all, but I donβt think nuclear can fill the same spot as peaker plants. Nuclear usually fills the base load needs on the grid. I donβt believe thereβs nuclear with ramp rates capable of competing with a peaking gas turbine.
Energy storage does fill this gap usually. My ideal grid would be a semi-flexible nuclear baseload (+ some ancillary services), renewable βmid-load,β and energy storage peaking (+frequency response, etc.).
Ah yes famous conservative ideals such as community owned and locally managed power grids to not be beholden to fossil fuel mega-corporations. Advocating for technologies to immediately get us to net zero carbon emissions Such as Federal Grants and funding for development and mass deployment of SMRs to local communities to provide free near zero carbon power.
In any case me personally I'd rather just put a bunch of big fucking satellites in the sky that use solar power to shoot a huge microwave beam down at the earth and then use that to generate power. Fuck energy storage of solar, just shoot it around the earth with a big set of microwave lasers and mirrors.
Air pollution from coal and oil is estimated to kill 5 million people every year. That's more than every nuclear disaster combined, and not to mention the signifcant safety advances that have been made since those disasters.
All nuclear waste ever produced can fit in one football field. It's stored in containers so thick you can go up and hug them safely, and so strong you can ram them with a train without doing significant damage. And if need be, we have the means to bury it deep underground.
Renewables are fine, but they don't deliver consistently, so they need backup power. Nuclear provides that at much lower environmental cost than, say, giant lithium batteries.
For one, even with disasters factored in, nuclear kills only 0.04 people per TWh of energy produced. Coal kills 160. That is four orders if magnitude more.
Oil fares better, but with 36 fatalities per TWh, that's still a thousand times more deadly than nuclear.
For two, every milligram of emissions from nuclear power is accounted for, as someone in the other thread said. All the waste fits inside a football field, and is stored in ginormous casks which can stand being smashed by a train, and are so thick you can hug them with no consequences to health and safety.
Meanwhile, emissions from coal and oil are vented to atmosphere. Including volatile radioactive trace contaminants. Which means that ironically, on top of the greater fatalities and the carbon emissions, fossil fuels have worse nuclear emissions.
As for storage, for one, that's hampered because the oblivious and the malicious get to contribute to the discussions. Fact is that there are sites for long term storage, which are in the process of being filled with spent fuel.
For two, much less of that stuff is needed if spent nuclear fuel is recycled. Which Japan and France do.
Finally, an electricity grid needs three things: capacity, stability and flexibility. Both nuclear and renewables offer stability, but only nuclear offers stability, while renewables offer flexibility.
A nuclear scientist once explained this to me and a few of my friends in such a great way and I can only do injustice to that explaination, but I will try anyway.
What the nuclear disasters are, are tail risks. What he meant by that, is the more severe a disaster is the less chance it has happening, which you can imagine like the tail of a rat: the further away it is from body the thinner it is.
Now the thing about nuclear disasters is that the tail is very long and gets very thin towards the end. That makes it so most incidents reported are incredibly unintresting (thankfully), most of them being non-vital valves gettint stuck and such.
But when those really small (and with advancement always shrinking) chances cause a disaster you may have to evacuate a town.
Then he told us about the Eschede train disaster. What happened was basically that a wheel of a train cracked and through incredible unluck killed half of the passangers.
And looking at the history of trains, while this particular kind of mishap is very rare and we even have systems in place to prevent it from happening, other kinds of catastrophic failures have happened multiple times throughout history, sometimes even killing bystanders, much like a nuclear reactor could.
This didn't stop people from boarding trains though, since the odds were always in their favor and the usefullness of the train was incredible at the time.
At the end of the day we have to evaluate whether the benefits are worth the risk. And once again this scientist told us that while he may be a bit biased in this regard he does think those disasters are less and less likely to happen by the day and with the amount of energy generated they are quite worth it.
Do me a favor and look at the big chartand see how much of our energy needs are currently met by oil, coal and natural gas and see that 16% of our energy needs are met by a combination of all renewables. While I agree that we do need to continue investing more in renewables. There is only so much sunshine in a day and it isn't sunny everyday and it isn't sunny everywhere. We do not have the transmission technology to pipe electricity across continents feasibly. There's certainly enough Sunshine at the equator. Good luck getting it beyond 30Β° north or south. The other issue is storage pumped. Hydro isn't an option in most places because there isn't enough water or natural reservoirs available to fill. So please elaborate on your battery storage solution for your solar mega farms and how you're going to distribute that energy feasibly worldwide.