If anyone's wondering, I used to be a physicist and gravity was essentially my area of study, OP is right assuming an ideal system, and some of the counter arguments I've seen here are bizarre.
If this wasn't true, then gravity would be a constant acceleration all the time and everything would take the same amount of time to fall towards everything else (assuming constant starting distance).
You can introduce all the technicalities you want about how negligible the difference is between a bowling ball and a feather, and while you'd be right (well actually still wrong, this is an idealised case after all, you can still do the calculation and prove it to be true) you'd be missing the more interesting fact that OP has decided to share with you.
If you do the maths correctly, you should get a=G(m+M)/r^2 for the acceleration between the two, if m is the mass of the bowling ball or feather, you can see why increasing it would result in a larger acceleration. From there it's just a little integration to get the flight time. For the argument where the effect of the bowling ball/feather is negligible, that's apparent by making the approximation m+M≈M, but it is an approximation.
I could probably go ahead and work out what the corrections are under GR but I don't want to and they'd be pretty damn tiny.
This would make a good "What if?" for XKCD. In a frictionless vacuum with two spheres the mass of the earth and a bowling ball how far away do they need to start before the force acting on the earth sized mass contributes 1 Planck length to their closure before they come together? And the same question for a sphere with the mass of a feather.
“In our limited language that tries to describe reality and does so very poorly, how would you describe this situation that would literally never happen?”
There’s too many words in this meme that’s making me dizzy from all your fancy science leechcraft, wizard.
I reject your reality and substitute my own: the feather falls faster. It’s more streamlined than the bowling ball, and thus it slips through the vacuum much faster and does hit the ground and stay on the ground, I think. The ball will bounce at least once, maybe even three times. On each bounce, parts of it probably break off, which change the weight. Thankfully those broken pieces won’t hurt anyone because they’re sucked up by the vacuum. Thus, rendering your dungeon wizard spells ineffective against me.
This argument is deeply flawed when applying classical Newtonian physics. You have two issues:
Acceleration of a system is caused by a sum of forces or a net force, not individual forces. To claim that the Earth accelerates differently due to two different forces is an incorrect application of Newton's second law. If you drop a bowling and feather in a vacuum, then both the feather and the bowling ball will be pulling on the Earth simultaneously. The Earth's acceleration would be the same towards both the bowling ball and the feather, because we would consider both the force of the feather on the Earth and the force of the bowling ball on the Earth when calculating the acceleration of the Earth.
You present this notion that two different systems can accelerate at 9.81 m/s/s towards Earth according to an observer standing on the surface of Earth; but when you place an observer on either surface of the two systems, Earth is accelerating at a different rate. This is classically impossible. If two systems are accelerating at 9.81 m/s/s towards Earth, then Earth must be accelerating 9.81 m/s/s towards both systems too.
The gravitational force between two objects is G(m1 m2)/r²
G = ~6.67 • 10^-11 Nm²/kg²
m1 = Mass of the earth = ~5.972 • 10^24 kg
m2 = Mass of the second object, I'll use M to refer to this from now on
r = ~6378 • 10^3 m
Fg = 6.67 • 10-11 Nm²/kg² • 5.972 • 1024 kg • M / (6378 • 10^3 m)² = ~9.81 • M N/kg = 9.81 • M m kg / s² / kg = 9.81 • M m/s² = g • M
Since this is the acceleration that works between both masses, it already includes the mass of an iron ball having a stronger gravitational field than that of a feather.
So yes, they are, in fact, taking the same time to fall.
This may be a stupid question, but: assuming an object (the bowling ball) is created from materials found on Earth and that it remains within the gravity well of Earth from material procurement stage to the point where it is dropped, wouldn't the acceleration of the Earth towards the object be kind of a null considering the whole timeline of events? I mean, I get the distinction of higher mass objects technically causing the Earth to accelerate towards them faster if we're talking a feather vs a bowling ball that both originated somewhere else before encountering Earth's gravity well in a vacuum, it just seems kind of weird to consider Earth's acceleration towards objects that are originating and staying within its gravity well?
No, it isn't. Because earth wouldn't fall towards the ball. Why?
Go to your frige right now and try to push it with one finger. It doesn't move does it? You may say "That's because of static friction!" And you would be correct. The force of static friction. Because the object moves in the direction of vector sum of all forces.
Tap for spoiler
(In the example with fridge the static friction force cancels all other forces up to certain value and after that - motion)
And adding microscopic attraction force towards the ball absolutely doesn't change the full vector sum of forces, that are applied to Earth constantly (which is probably pointed towards the sun).
Does this imply that if I am standing on an object moving at a constant speed in a straight line, and I am lifting and dropping a sufficiently massive object such that I’m causing the object in standing on to accelerate towards the object I’m dropping, that eventually I’ll slow or stop the object I’m standing on?
Bowling ball. Because wind resistance is a thing and the feather has higher surface area creating more drag, and there’s no such thing as a perfect vacuum.