Guide to Self Hosting LLMs Faster/Better than Ollama
I see a lot of talk of Ollama here, which I personally don't like because:
The quantizations they use tend to be suboptimal
It abstracts away llama.cpp in a way that, frankly, leaves a lot of performance and quality on the table.
It abstracts away things that you should really know for hosting LLMs.
I don't like some things about the devs. I won't rant, but I especially don't like the hint they're cooking up something commercial.
So, here's a quick guide to get away from Ollama.
First step is to pick your OS. Windows is fine, but if setting up something new, linux is best. I favor CachyOS in particular, for its great python performance. If you use Windows, be sure to enable hardware accelerated scheduling and disable shared memory.
Ensure the latest version of CUDA (or ROCm, if using AMD) is installed. Linux is great for this, as many distros package them for you.
Install Python 3.11.x, 3.12.x, or at least whatever your distro supports, and git. If on linux, also install your distro's "build tools" package.
As far as I am concerned, 3 matter to "home" hosters on consumer GPUs:
Exllama (and by extension TabbyAPI), as a very fast, very memory efficient "GPU only" runtime, supports AMD via ROCM and Nvidia via CUDA: https://github.com/theroyallab/tabbyAPI
Aphrodite Engine. While not strictly as vram efficient, its much faster with parallel API calls, reasonably efficient at very short context, and supports just about every quantization under the sun and more exotic models than exllama. AMD/Nvidia only: https://github.com/PygmalionAI/Aphrodite-engine
This fork of kobold.cpp, which supports more fine grained kv cache quantization (we will get to that). It supports CPU offloading and I think Apple Metal: https://github.com/Nexesenex/croco.cpp
Now, there are also reasons I don't like llama.cpp, but one of the big ones is that sometimes its model implementations have... quality degrading issues, or odd bugs. Hence I would generally recommend TabbyAPI if you have enough vram to avoid offloading to CPU, and can figure out how to set it up. So:
Open a terminal, run git clone https://github.com/theroyallab/tabbyAPI.git
This can go wrong, if anyone gets stuck I can help with that.
Next, figure out how much VRAM you have.
Figure out how much "context" you want, aka how much text the llm can ingest. If a models has a context length of, say, "8K" that means it can support 8K tokens as input, or less than 8K words. Not all tokenizers are the same, some like Qwen 2.5's can fit nearly a word per token, while others are more in the ballpark of half a work per token or less.
Exllama has a feature called "kv cache quantization" that can dramatically shrink the VRAM the "context" of an LLM takes up. Unlike llama.cpp, it's Q4 cache is basically lossless, and on a model like Command-R, an 80K+ context can take up less than 4GB! Its essential to enable Q4 or Q6 cache to squeeze in as much LLM as you can into your GPU.
There are all sorts of finetunes... and a lot of straight-up garbage. But I will post some general recommendations based on total vram:
4GB: A very small quantization of Qwen 2.5 7B. Or maybe Llama 3B.
6GB: IMO llama 3.1 8B is best here. There are many finetunes of this depending on what you want (horny chat, tool usage, math, whatever). For coding, I would recommend Qwen 7B coder instead: https://huggingface.co/models?sort=trending&search=qwen+7b+exl2
8GB-12GB Qwen 2.5 14B is king! Unlike it's 7B counterpart, I find the 14B version of the model incredible for its size, and it will squeeze into this vram pool (albeit with very short context/tight quantization for the 8GB cards). I would recommend trying Arcee's new distillation in particular: https://huggingface.co/bartowski/SuperNova-Medius-exl2
16GB: Mistral 22B, Mistral Coder 22B, and very tight quantizations of Qwen 2.5 34B are possible. Honorable mention goes to InternLM 2.5 20B, which is alright even at 128K context.
20GB-24GB: Command-R 2024 35B is excellent for "in context" work, like asking questions about long documents, continuing long stories, anything involving working "with" the text you feed to an LLM rather than pulling from it's internal knowledge pool. It's also quite goot at longer contexts, out to 64K-80K more-or-less, all of which fits in 24GB. Otherwise, stick to Qwen 2.5 34B, which still has a very respectable 32K native context, and a rather mediocre 64K "extended" context via YaRN: https://huggingface.co/DrNicefellow/Qwen2.5-32B-Instruct-4.25bpw-exl2
32GB, same as 24GB, just with a higher bpw quantization. But this is also the threshold were lower bpw quantizations of Qwen 2.5 72B (at short context) start to make sense.
48GB: Llama 3.1 70B (for longer context) or Qwen 2.5 72B (for 32K context or less)
Again, browse huggingface and pick an exl2 quantization that will cleanly fill your vram pool + the amount of context you want to specify in TabbyAPI. Many quantizers such as bartowski will list how much space they take up, but you can also just look at the available filesize.
Put it in your TabbyAPI models folder, and follow the documentation on the wiki.
There are a lot of options. Some to keep in mind are chunk_size (higher than 2048 will process long contexts faster but take up lots of vram, less will save a little vram), cache_mode (use Q4 for long context, Q6/Q8 for short context if you have room), max_seq_len (this is your context length), tensor_parallel (for faster inference with 2 identical GPUs), and max_batch_size (parallel processing if you have multiple user hitting the tabbyAPI server, but more vram usage)
And be careful with your sampling settings when using LLMs. Different models behave differently, but one of the most common mistakes people make is using "old" sampling parameters for new models. In general, keep temperature very low (<0.1, or even zero) and rep penalty low (1.01?) unless you need long, creative responses. If available in your UI, enable DRY sampling to tamp down repition without "dumbing down" the model with too much temperature or repitition penalty. Always use a MinP of 0.05 or higher and disable other samplers. This is especially important for Chinese models like Qwen, as MinP cuts out "wrong language" answers from the response.
Now, once this is all setup and running, I'd recommend throttling your GPU, as it simply doesn't need its full core speed to maximize its inference speed while generating. For my 3090, I use something like sudo nvidia-smi -pl 290, which throttles it down from 420W to 290W.
Sorry for the wall of text! I can keep going, discussing kobold.cpp/llama.cpp, Aphrodite, exotic quantization and other niches like that if anyone is interested.
Bookmarked and will come back to this. One thing that may be if interest to add is for AMD cards with 20gb of ram. I’d suppose that it would be Qwen 2.5 34B with maybe less strict quant or something.
Also, it may be interesting to look at the AllenAI molmo related models. I’m kind of planning to do this myself but haven’t had time as yet.
Yep. 20GB is basically 24GB, though its too tight for 70B models.
One quirk for 7900 owners is that installing flash attention for long context usage can be a pain. Apparently it is doable now, I need to dig up the link, but it might just be easier to use kobold.cpp rocm with its native flash attention.
As for vision models, that is a whole different can of worms. Exllama does not support this, so you'd need a framework that does.
On a 3090, I simply can't run Command-R or Qwen 2.5 34B well at 64K-80K context with ollama. Its slow even at lower context, the lack of DRY sampling and some other things majorly hit quality.
Ollama is meant to be turnkey, and thats fine, but LLMs are extremely resource intense. Sometimes the manual setup/configuration is worth it to squeeze out every ounce of extra performance and quantization quality.
Even on CPU-only setups, you are missing out on (for instance) the CPU-optimized quantizations llama.cpp offers now, or the more advanced sampling kobold.cpp offers, or more fine grained tuning of flash attention configs, or batched inference, just to start.
And as I hinted at, I don't like some other aspects of ollama, like how they "leech" off llama.cpp and kinda hide the association without contributing upstream, some hype and controversies in the past, and hints that they may be cooking up something commercial.
I know this is not the theme of this post, but I wonder if there's an LLM that doesn't hallucinate when asked to summarize information of a group of documents. I tried Gpt4all for simple queries like finding out which documents mentioned a certain phrase. It often gave me filenames that didn't actually exist. Hallucinating contents is one thing but making up data source is just horrible.
Command R is built for this if you have the vram to swing it, otherwise GLM4 (or MiniG as linked below) is great. The later, unfortunately, doesn't work with TabbyAPI, so you have to use something like Kobold.cpp.
You also have to use very low (basically zero) temperature and be careful with other sampling settings, and watch your context length.
There are more sophisticated RAG setups some of these UIs (like open Web UI) integrate, and sometimes you'll need to host an embeddings model alongside the llm for that to work.
Do you have any recommendations for a Perplexity.ai type setup? It's one of the few recent innovations I've found useful. I've heard of Perplexica and a few others, but not sure what is the best approach.
I haven't heard about it before today but I tried asking it what separates it from other LLMs and apparently the answer is just that it does a google search and shows you the source its summarizing, which if true is not very compelling, and if a hallucination or missing details then its at least not very compelling as a search replacement
It abstracts away llama.cpp in a way that, frankly, leaves a lot of performance and quality on the table.
OP, do you have any telemetry you can show us comparing the performance difference between what you setup on this guide and an Ollama setup? Otherwise, at face value, I'm going to assume this is another thing on the internet i have to assume is uncorroborated bullshit. Apologies for sounding rude.
I don't like some things about the devs. I won't rant, but I especially don't like the hint they're cooking up something commercial.
This concerns me. Please provide links for us to read here about this. I would like any excuse to uninstall Ollama. Thank you!
Thanks for the writeup! So far I've been using ollama, but I'm always open for trying out alternatives. To be honest, it seems I was oblivious to the existence of alternatives.
Your post is suggesting that the same models with the same parameters generate different result when run on different backends?
I can see how the backend would have an influence hanfling concurrent api calls, ram/vram efficiency, supported hardware/drivers and general speed.
But going as far as having different context windows and quality degrading issues is news to me.
Your post is suggesting that the same models with the same parameters generate different result when run on different backends
Yes... sort of. Different backends support different quantization schemes, for both the weights and the KV cache (the context). There are all sorts of tradeoffs.
There are even more exotic weight quantization schemes (ALQM, VPTQ) that are much more VRAM efficient than llama.cpp or exllama, but I skipped mentioning them (unless somedone asked) because they're so clunky to setup.
Different backends also support different samplers. exllama and kobold.cpp tend to be at the cutting edge of this, with things like DRY for better long-form generation or grammar.
Only aphrodite (and other enterprise backends like vllm/sglang) can make use of NVLink, but even exllama or mlc-llm split across GPUs nicely over PCIe, no NVLink needed.
2x 3090s or P40s is indeed a popular config among local runners, and is the perfect size for a 70B model. Some try to squeeze Mistral-Large in, but IMO its too tight a fit.
Is there an inherent benefit for using NVLINK? Should I specifically try out Aprodite over the other recommendations when having 2x 3090 with NVLINK available?
I'd be interested in setting up the highest quality models to run locally, and I don't have the budget for a GPU with anywhere near enough VRAM, but my main server PC has a 7900x and I could afford to upgrade its RAM - is it possible, and if so how difficult, to get this stuff running on CPU? Inference speed isn't a sticking point as long as it's not unusably slow, but I do have access to an OpenAI subscription so there just wouldn't be much point with lower quality models except as a toy.
Aphrodite is a fork of vllm. You should check it out!
If you are looking for raw batched speed, especially with some redundant context, I would actually recommend sglang instead. Check out its experimental flags too.
I like the look of exui, but is there a way to run it without torch or needing a GPU? I have tabby running on a separate computer, like SillyTavern I just want to connect to the API, not host it locally
If you download the source, you should be able to build it for metal? Croco.cpp is just a fork of kobold.cpp
I think lmstudio added MLX support, but otherwise you are stuck with anything llama.cpp based. I'd probably download llama.cpp directly and use the llama server first.
I tried llama.cpp with llama-server and Qwen2.5 Coder 1.5B. Higher parameters just output garbage and I can see an OutOfMemory error in the logs.
When trying the 1.5B model, I have an issue where the model will just stop outputting the answer, it will stop mid sentence or in the middle of a class.
Is it an issue with my hardware not being performant enough or is it something I can tweak with some parameters?
Llamafile is fine, but it still leaves a lot of performance on the table.
You can setup kobold.cpp with Q8 flash attention without ever having to install pytorch, which is the real headache. It does have a little python launch script, but its super minimal.
You can use the native llama.cpp server for absolutely zero python usage.
I run a Mac Mini as a home server because it’s great for hardware transcoding, I was wondering if I could host an LLM locally. I work with python so that wouldn’t be an issue but I have no idea how to do CUDA or work on low level code. Is there anything I need to consider? Would probably start with a really small model.
Yeah it’s an M1 16GB, sounds awesome I’ll try, thanks a lot for the guide it’s super helpful. I just got the Mac Mini for jellyfin but this is an unexpected use case where the server comes in very handy.
Super useful guide. However after playing around with TabbyAPI, the responses from models quickly become jibberish, usually halfway through or towards the end. I'm using exl2 models off of HuggingFace, with Q4, Q6, and FP16 cache. Any tips? Also, how do I control context length on a per-model basis? max_seq_len in config.json?
I just can't get ROCm / gpu generation to work on Bazzite, like at all. It seems completely cursed.
I tried koboldcpp through a Fedora distrobox and it didn't even show any hardware options. Tried through an Arch AUR package through distrobox and the ROCm option is there but ends with a CUDA error. lol
The Vulkan option works but seems to still use the CPU more than the GPU and is consequently still kinda slow and I struggle to find a good model for my 8GB card. Fimbulvetr-10.7B-v1-Q5_K_M for example was still too slow to be practical.
Tried LM Studio directly in Bazzite and it also just uses the CPU. It also is very obtuse on how to connect to it with SillyTavern, as it asks for an API key? I managed it once in the past but I can't remember how but it also ended up stopping generating anything after a few replies.
Krita's diffusion also only runs on the CPU, which is abysmally slow, but I'm not sure if they expect Krita to be build directly on the system for ROCm support to work.
I'm not even trying to get SDXL or something to run at this point, since that seems to be still complicated enough even on a regular distro.
I don't like Fedora because its CUDA support is third party, and AFAIK they dont natively package ROCm. And its too complex to use through something like distrobox... I don't want to tell you to switch OSes, but you'd have a much better time with CachyOS, which is also optimized for Steam gaming.
Alternatively you could try installing rocm images through docker, but you have to make sure GPU passthrough is working).
It also depends on your GPU. If you are on an RX 580, you can basically kiss rocm support goodbye, and might want to investigate mlc-llm's vulkan backend.
Fimbulvetr is ancient now, your go to models are Qwen 2.5 14B at short context or llama 3.1 8B/Qwen 2.5 7B at longer context.
I distrohopped so much after each previous distro eventually broke and me clearly not being smart enough to recover. I'm honestly kinda sick of it, even if the immutable nature also annoys the shit out of me.
My GPU is a 6650 XT, which should in principle work with ROCm.
Which model specifically are you recommending? Llama-3.1-8B-Lexi-Uncensored-V2-GGUF? Because the original meta-llama ones are censored to all hell and Huggingface is not particularly easy to navigate, on top of figuring out the right model size & quantization being extremely confusing.
If your "FIRST STEP" is to choose an OS: Fuck that.
You should never have to change your OS just to use this crap. It's all written in Python. It should work on every OS available. Your first step is installing the prerequisites.
If you're using something like Continue for local coding tasks, CodeQwen is awesome, and you'll generally want a context window of 120k or so because for coding, you want all the code context - or else the LLM starts spitting out repetitious stuff, or can't ingest all of your context so it'll rewrite stuff that's already there.
CodeQwen 1.5 is pretty old at this point, afaik made obsolete by their latest release.
The Qwen models (at least 2.5) are really only good to like 32K, which is still a ton of context. But I've been testing Qwen 32B at 64K -90K and even that larger model is... Not great.
32K is generally enough to get the jist of whatever you're trying to fill in.
Why would you even bother trying to run this all through a VM when you can just run it directly? If you're to the point of using VMs, you don't need this tutorial anyways.
Are you seriously telling me you're jumping through all the hoops to spin up a VM on Linux, and then doing all the configuration for GPU passthrough, because you can't just figure out how to run it locally?